
 1 

 

 

 

The Overall And Extremely Low Return Spillovers Among 

Cryptocurrencies and Stock Markets: Evidence from the COVID-19 

Pandemic 

 

Yingfei Zheng, Jiachen Zhang 

  



 2 

 

Abstract 

Employing spillover index and cross-quantilogram techniques, we measures the 

overall and extremely low return spillovers among three representative 

cryptocurrencies (Bitcoin, Ethereum, and Litecoin) and three major stock market 

indices (the S&P 500, the FTSE 100, and the SZSE 300). The results demonstrate that 

the overall spillover effects have sharply enhanced and maintained at high level during 

the COVID-19 pandemic, and all the cryptocurrencies are net transmitters of shocks. 

Return spillover effects are observed stronger in short-term (a trading week) than in the 

medium-term (a trading month) and in the long-term (a trading quarter). Under extreme 

downturn condition, the lowest return dependence between a cryptocurrency and a 

stock market is not significantly negative or positive, but the dependence relationship 

between a pair of cryptocurrencies or between a pair of stock indices is significantly 

positive. This suggests a weak form safe-haven role of cryptocurrencies against stock 

markets during the COVID-19 pandemic. 
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1. Introduction 

As a potential safe haven asset against stocks, cryptocurrency has received great 

attention due to its unique characteristics, such as non-political attributes, no central 

authority, no cash-flows and produced by “mining” (Baur et al., 2018). Multiple studies 

have employed various techniques to examine the integration of the cryptocurrency 

with traditional financial assets and provided valuable insights into portfolio 

diversification (Bouri et al., 2017; Corbet et al., 2018; Trabelsi, 2018; Bouri et al., 2019; 

Shahzad et al., 2020; Conlon et al., 2020; Mariana et al., 2021). They come to the 

conclusion that the connectedness between cryptocurrency and conventional assets is 

weak, but with a rising trend (Zeng et al., 2020) or with time vary characteristics (Ji et 

al., 2018; Charfeddine et al., 2020; Corbet et al., 2018). Studies point out that 

cryptocurrency is relatively isolated from traditional assets during the cryptocurrency 

bull market (Ji et al., 2018; Shahzad et al., 2019), but the diversification benefits tend 

to be lower during the cryptocurrency bear market (Corbet et al., 2018; Feng et al., 2018; 

Zhang et al., 2021; Wang et al., 2021). Some researches even provide evidence that in 

time of serious financial and economic disruption some assets do not act as hedges, or 

safe havens, but perhaps rather as amplifiers of contagion(Corbet et al., 2020; Conlon 

and McGee, 2020). 

Notably, the majority of the financial markets are greatly affected by the COVID-

19 in 2020. Both cryptocurrency and stock market became extremely volatile and 

experienced a sharp decline. For cryptocurrencies, Bitcoin, Ethereum and Litecoin 

experienced a record price declined of 36%, 42% and 36%, respectively, on March 12, 
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2020. For stock indices, the S&P 500 and FTSE 100 sharply fell more than 20% from 

February to March in 2020. Therefore, we cannot assume that the connectedness 

between cryptocurrency and the stock market remains stable during the COVID-19 

pandemic.  

As the European Central Bank said, “there is a need for a continuous monitoring 

of the Bitcoin’s integration into the global financial system” (European Central Bank, 

2012). It is a way to implement this principle that we study the spillover effects among 

the three representative cryptocurrencies (Bitcoin, Ethereum, and Litecoin) and three 

major stock market indices (S&P 500, FTSE 100, and SZSE 300) and discuss the 

diversification opportunities during the COVID-19 pandemic.  

In order to achieve our research purposes, we adopt three techniques to conduct 

the analysis: the time-domain spillover framework designed by Diebold and Yilmaz 

(2009, 2012, 2014), frequency decomposition of spillover designed by Barunik and 

Krehlik (2015), and the cross-quantilogram designed by Han et al. (2016). These three 

measuring methods allow us to not only study the strength of connectedness between 

cryptocurrencies and stock market indices in average but also focus on the extreme 

market conditions, and permit measuring multivariate and bivariate connections at 

different time scales, which is more indicative of market behavior. To the best of our 

knowledge, no previous study has combined the spillover index and cross-quantilogram 

to investigate the spillover effects among cryptocurrencies and stock market indices 

during the COVID-19 pandemic. 

2. Methodologies 
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2.1 The time- and frequent-domain spillover index 

The time-domain spillover framework by Diebold and Yilmaz (2009, 2012, 2014) 

is built upon a generalized forecast error variance decomposition (GFEVD) of a vector 

autoregressive (VAR) model. The p-order VAR model can be expressed as: 

𝑦𝑡 = ∑ Φ𝑖

𝑝

𝑖=1

𝑦𝑡−𝑖 + ε𝑡 (1) 

where 𝑦𝑡  is an 𝑁 × 1  vector, represents the return vectors of N variables, each Φ𝑖 

denotes an 𝑁 × 𝑁  coefficient matrix, and ε𝑡 ∼ (0, Σ) . The moving average 

representation is 𝑦𝑡 = ∑ 𝐴𝑖ε𝑡−𝑖
∞
i=0 , where 𝐴𝑖 satisfies the recursion 𝐴𝑖 = ∑ Φ𝑗

𝑝
𝑗=1 𝐴𝑡−𝑗 

with 𝐴0 is an 𝑁 × 𝑁 identity matrix. Let θ𝑖𝑗(𝐻) be the contribution of variable 𝑗 to the 

generalized forecast error variance of variable 𝑖, the H-step ahead generalized forecast 

error variance decomposition can be calculated as follows: 

θ𝑖𝑗(𝐻) =
σ𝑗𝑗

−1 ∑ (𝑒𝑖
′𝐴ℎΣ𝑒𝑗)

2𝐻−1
ℎ=0

∑ (𝑒𝑖
′𝐴ℎΣ𝐴ℎ

′ 𝑒𝑗)𝐻−1
ℎ=0

(2) 

Where σ𝑗𝑗   denotes the standard deviation of the error term ε  of 𝑗𝑡ℎ  equation, 𝐴ℎ 

denotes coefficient matrix of moving average representation for VAR(p) model, Σ is the 

covariance matrix of error term ε, and 𝑒𝑖 is the selection vector with the 𝑖𝑡ℎ equaling to 

one and zeros otherwise.  

To compare different pairwise connectedness of any two variables, let 𝑃𝑆𝑖←𝑗(𝐻) 

denote the pairwise directional spillover from variable 𝑗  to variable 𝑖  (i.e., spillover 

from variable 𝑗 to variable 𝑖), we standardize the results by the row sum as 

𝑃𝑆𝑖←𝑗(𝐻) = θ̃𝑖𝑗 =
θ𝑖𝑗(𝐻)

∑ θ𝑖𝑗(𝐻)𝑁
𝑗=1

(3) 

Then, the directional spillover from variable 𝑖 to all other variables can be defined as 
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𝐷𝑆⋅←𝑖(𝐻) = ∑ θ̃𝑗𝑖(𝐻)

𝑁

𝑗=1,𝑖≠𝑗

(4) 

It measures the proportion of return impact received from other variables in the total 

forecast error variance for variable 𝑖. Analogously, the directional spillover from all 

other variables to variable 𝑖 can be calculated as 

𝐷𝑆⋅←𝑖(𝐻) = ∑ �̃�𝑖𝑗(𝐻)

𝑁

𝑗=1,𝑖≠𝑗

(5) 

Then the net directional spillover from variable 𝑖 to all other variables is 

𝑁𝑆𝑖(𝐻) = 𝐷𝑆⋅←𝑖(𝐻) − 𝐷𝑆𝑖←⋅(𝐻) (6) 

To measure the system-wide spillovers, we add up all the non-diagonal �̃�𝑖𝑗(𝐻) to 

calculate the total spillover index as follows 

𝑇𝑆(𝐻) =
∑ θ̃𝑗𝑖(𝐻)𝑁

𝑖,𝑗=1,𝑖≠𝑗

𝑁
(7) 

Furthermore, under the frequent-domain spillover framework of Baruník and 

Křehlík (2018), the spillovers described above can be decomposed across different 

frequencies, based on spectral representations of the variance decomposition. Thus, at 

a given frequency, we can investigate the duration of the spillovers among 

cryptocurrencies and stock market indices. Let (𝑓(ω))
𝑗,𝑘

  denote the generalized 

causation spectrum over frequency ω(ω ∈ (−π, π)), which represents the portion of 

the generalized variance decomposition of the 𝑗𝑡ℎ variable at a given frequency ω due 

to shocks in the 𝑘𝑡ℎ variable. The spillover index on frequency band 𝑑 = (𝑎, 𝑏): 𝑎, 𝑏 ∈

(−π, π), 𝑎 < 𝑏 can be computed as  

(θ𝑑)𝑗,𝑘 =
1

2𝜋
∫ Γ𝑗(ω)(𝑓(ω))

𝑗,𝑘
𝑑

𝑑ω (8) 

where Γ𝑗(𝜔) denotes frequency share of the variance of the 𝑗𝑡ℎ variable. Therefore, the 
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generalized variance decomposition on the frequency band 𝑑 can be scaled as  

(θ̃𝑑)
𝑗,𝑘

= (θ𝑑)𝑗,𝑘 ∑(θ∞)𝑗,𝑘

𝑘

⁄ (9) 

where (θ∞)𝑗,𝑘 = ∑ (θ𝑑𝑠
)

𝑗,𝑘𝑑𝑠
, 𝑑𝑠 denotes an interval on the real line from the set of 

intervals D. When 𝑑 → ∞, (θ∞)𝑗,𝑘 is equal to θ𝑗,𝑘(ℎ ) in time domain. We can define 

the total frequency spillover on the frequency band 𝑑 as   

𝑆𝑑
𝐹 = 100 × (

∑ θ̃𝑑

∑ θ̃∞

−
𝑇𝑅(θ̃𝑑)

∑ θ̃∞

) (10) 

Similarly, we can derive the calculation formulas of frequency directional spillover. 

In this paper, to estimate the time-domain spillover index, the lag length of the 

VAR system is set to be two and we perform the variance decomposition in the 

predictive horizon of 100 days, which are consistent with settings in Baruník and 

Kˇrehlík (2018). In further estimation of the frequent-domain spillover index, following 

Pham (2021), we consider three frequency bands: short-term, medium-term and long-

term, corresponding to 1-5 days (a trading week), 5-22 days (a trading month) and 22-

66 days (a trading quarter). 

 

2.2 The cross-quatilogram 

The cross-quantilogram quantifies the bivariate connections between variables, 

considering two stationary time series as {𝑥𝑖,𝑡, 𝑡 ∈ 𝑍}, 𝑖 =  1, 2. In this paper, 𝑥1,𝑡 and 

𝑥2,𝑡 represent any combination of cryptocurrency and stock market index return time 

series. Let 𝑓𝑖(⋅) and 𝐹𝑖(⋅) be the distribution and density functions of series 𝑥𝑖,𝑡, 𝑖 =

 1,2. The corresponding quantile function is represented as 𝑞𝑖𝑡(τ𝑖) = 𝑖𝑛𝑓{𝑣: 𝐹𝑖(𝑣) ≥
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τ𝑖} for τ𝑖 ∈ (0,1). The cross-quantilogram for a pair of τ1 and τ2 with 𝑘 lags between 

two events {𝑥1,𝑡 ≤ 𝑞1,𝑡(τ1)} and  {𝑥2,𝑡−𝑘 ≤ 𝑞2,𝑡−𝑘(𝜏2)} can be expressed as: 

𝜌𝜏(𝑘) =
𝐸 [𝜓𝜏1

(𝑥1,𝑡 − 𝑞1,𝑡(𝜏1)) 𝜓𝜏2
(𝑥2,𝑡−𝑘 − 𝑞2,𝑡−𝑘(𝜏2))]

√𝐸 [𝜓𝜏1
2 (𝑥1,𝑡 − 𝑞1,𝑡(𝜏1))] √𝐸 [𝜓𝜏2

2 (𝑥2,𝑡−𝑘 − 𝑞2,𝑡−𝑘(𝜏2))]

(11) 

where ψτ𝑖
(μ) = 1 [μ < 0]  − τ is the quantile-hit process. In the case of two events: 

{𝑥1,𝑡 ≤ 𝑞1,𝑡(τ1)}  and {𝑥2,𝑡−𝑘 ≤ 𝑞2,𝑡−𝑘(τ2)} , 𝜌𝜏(𝑘)  =  0  indicates no directional 

predictability from event {𝑥2,𝑡−𝑘 ≤ 𝑞2,𝑡−𝑘(τ2)} to event {𝑥1,𝑡 ≤ 𝑞1,𝑡(τ1)}, implies that 

the returns of variable 𝑖 =  2  below or above a quantile 𝑞2,𝑡(τ2)  at time 𝑡 , does not 

provide useful information for predicting whether the returns of variable 𝑖 =  1 will be 

lower or higher than the quantile 𝑞1,𝑡(τ1) on the next 𝑘𝑡ℎ trading day.  

The sample cross-quantilogram can be estimated as: 

𝜌�̂�(𝑘) =
∑ 𝜓𝜏1

(𝑥1,𝑡 − �̂�1,𝑡(𝜏1)) 𝜓𝜏2
(𝑥2,𝑡−𝑘 − �̂�2,𝑡−𝑘(𝜏2))𝑇

𝑡=𝑘+1

√∑ 𝜓𝜏1
2 (𝑥1,𝑡 − �̂�1,𝑡(𝜏1))𝑇

𝑡=𝑘+1 √∑ 𝜓𝜏2
2 (𝑥2,𝑡−𝑘 − �̂�2,𝑡−𝑘(𝜏2))𝑇

𝑡=𝑘+1

(12) 

Where �̂�𝑖,𝑡(𝜏𝑖) denotes the unconditional sample quantile of 𝑥𝑖,𝑡. We use a Ljung-Box 

type test to test the statistical significance of 𝜌𝜏(𝑘), the test statistic can be calculated 

as: 

�̂�τ(𝑝) =
𝑇(𝑇 + 2) ∑ ρ̂𝑝

𝑘=1 τ

2
(𝑘)

𝑇 − 𝑘
(13) 

Following Han et al. (2016), we employ stationary bootstrap to approximate the 

null distribution of the cross-quantilograms and the Q-statistic above. 


